Renewable Energy Zone Meeting – September 29th 2009

OTEC Resource Data

Gérard C. Nihous

Dept. of Ocean and Resources Engineering

University of Hawaii

OTEC Resource Basics

- OTEC essentially is a baseload technology.
- In loose terms, OTEC is like hydroelectric power.
- Thermal resource (ΔT) plays the role of water head.
- Yet, there is no obvious flow rate constraint.

Optimized OTEC power is of the form:

$$P_{net} = P_{gross} - P_{loss} = AQ_{cw} (\Delta T)^2 - P_{loss}$$

- Coefficients A and P_{loss} are system specific.
- Typical values: $\Delta T \approx 20^{\circ}\text{C}$; $P_{loss} \approx 30\%$ of P_{gross} ; $P_{net} \approx 1$ MW for $Q_{cw} \approx 3$ m³/s.

- A change of 1°C in ΔT roughly leads to a change of 15% in P_{net} .
- The background ΔT characterizes extractable power in the absence of flow rate constraints.
- Around Hawaii, ΔT can be mapped from daily HYCOM+NCODA data (1/12° resolution) since late June 2007.

 Examples for ΔT defined between 20 m and 1000 m water depths:

February 1st 2008 ('cool season')

October 1st 2008 ('warm season')

August 2008 (spatial variability)

Temperature Difference [C] @ 20 m and 1000 m=Top

Temperature Difference [C] @ 20 m and 1000 m=Top

